On the Use of Variational Inference for Learning Discrete Graphical Models
نویسندگان
چکیده
We study the general class of estimators for graphical model structure based on optimizing l1-regularized approximate loglikelihood, where the approximate likelihood uses tractable variational approximations of the partition function. We provide a message-passing algorithm that directly computes the l1 regularized approximate MLE. Further, in the case of certain reweighted entropy approximations to the partition function, we show that surprisingly the l1 regularized approximate MLE estimator has a closed-form, so that we would no longer need to run through many iterations of approximate inference and message-passing. Lastly, we analyze this general class of estimators for graph structure recovery, or its sparsistency, and show that it is indeed sparsistent under certain conditions.
منابع مشابه
Neural Variational Inference and Learning in Undirected Graphical Models
Many problems in machine learning are naturally expressed in the language of undirected graphical models. Here, we propose black-box learning and inference algorithms for undirected models that optimize a variational approximation to the log-likelihood of the model. Central to our approach is an upper bound on the logpartition function parametrized by a function q that we express as a flexible ...
متن کاملVariational Inference for Sparse and Undirected Models
Undirected graphical models are applied in genomics, protein structure prediction, and neuroscience to identify sparse interactions that underlie discrete data. Although Bayesian methods for inference would be favorable in these contexts, they are rarely used because they require doubly intractable Monte Carlo sampling. Here, we develop a framework for scalable Bayesian inference of discrete un...
متن کاملEfficient Bounds for the Softmax Function and Applications to Approximate Inference in Hybrid models
The softmax link is used in many probabilistic model dealing with both discrete and continuous data. However, efficient Bayesian inference for this type of model is still an open problem due to the lack of efficient upper bound for the sum of exponentials. We propose three different bounds for this function and study their approximation properties. We give a direct application to the Bayesian t...
متن کاملAn Introduction to Variational Methods forGraphical
This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random elds). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inferenc...
متن کاملSparse Message Passing and Efficiently Learning Random Fields for Stereo Vision
Message passing algorithms based on variational methods and belief propagation are widely used for approximate inference in a variety of directed and undirected graphical models. However, inference can become extremely slow when the cardinality of the state space of individual variables is high. In this paper we explore sparse message passing to dramatically accelerate approximate inference. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011